Independent component analysis for biomedical signals.

نویسندگان

  • Christopher J James
  • Christian W Hesse
چکیده

Independent component analysis (ICA) is increasing in popularity in the field of biomedical signal processing. It is generally used when it is required to separate measured multi-channel biomedical signals into their constituent underlying components. The use of ICA has been facilitated in part by the free availability of toolboxes that implement popular flavours of the techniques. Fundamentally ICA in biomedicine involves the extraction and separation of statistically independent sources underlying multiple measurements of biomedical signals. Technical advances in algorithmic developments implementing ICA are reviewed along with new directions in the field. These advances are specifically summarized with applications to biomedical signals in mind. The basic assumptions that are made when applying ICA are discussed, along with their implications when applied particularly to biomedical signals. ICA as a specific embodiment of blind source separation (BSS) is also discussed, and as a consequence the criterion used for establishing independence between sources is reviewed and this leads to the introduction of ICA/BSS techniques based on time, frequency and joint time-frequency decomposition of the data. Finally, advanced implementations of ICA are illustrated as applied to neurophysiologic signals in the form of electro-magnetic brain signals data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

Analysis & Interpretation of Biomedical Signals using component extraction techniques

Biomedical signals can arise from one or many sources including heart, brains and endocrine systems. Multiple sources poses challenge to researchers which may have contaminated with artifacts and noise. The analysis of these signals is important both for research and for medical diagnosis and treatment. The applications of Independent Component Analysis (ICA) to biomedical signals is a rapidly ...

متن کامل

Component Extraction of Complex Biomedical Signals and Performance analysis

Biomedical signals can arise from one or many sources including heart, brains and endocrine systems. Multiple sources poses challenge to researchers which may have contaminated with artifacts and noise. The Biomedical time series signal like electroencephalogram (EEG), electrocardiogram (ECG), etc. The morphology of the cardiac signal is very important in most of diagnostics based on the ECG. T...

متن کامل

An automatic method for separation and identification of Biomedical Signals from Convolutive Mixtures by Independent Component Analysis in the Frequency Domain

In this study we propose an automatic method for solving convolutive mixtures separation. The independent components are extracted by frequency domain analysis, where the convolutive model can be solved by instantaneous mixing model approach. The signals are reconstructed back in the observation space resolving the ICA model ambiguities. Simulations are carried out to test the validity of the p...

متن کامل

Comparative Evaluation of Decomposition Algorithms based on Frequency Domain Blind Source Separation of Biomedical Signals

In this paper we compare the performance of different algorithms employed in solving frequency domain blind source separation of convolutive mixtures. The convolutive model is an extension of the instantaneous one and it allows to relax the hypothesis of a linear mixing process in which all the sources are supposed to reach the electrodes at the same time. This test is carried out in the freque...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological measurement

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2005